
Truth in Predicate Logic 

 

Consider the sentence “All turtles are green.” Let “Tx” mean “x is a turtle,” and “Gx” 

mean “x is green.” In PL, we symbolize the sentence: (x)(Tx ⊃ Gx). 

We might want to know if the sentence is true or false. In SL we could tell if any 

sentence was true or false based on the truth-values of the atomic sentences, which we 

could list out. We don’t exactly have atomic sentences in PL, so what do we need to 

make a list of in order to determine the truth of our sentence? We need an 

interpretation. 
 

Obviously we need to know all the things that are turtles and all the things that are 

green. Let’s assume, for convenience sake, that the only turtles are Leonardo, 

Michelangelo, Donatello, and Raphael, and that the only things that are Leonardo, 

Michelangelo, Donatello, Raphael. We can list these facts by providing two sets (a 

mathematical name for a collection of objects). 

 

Tx: {l, m, d, r} 

Gx: {l, m, d, r}  
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That would help us for (x)(Tx ⊃ Gx), but it wouldn’t help us for other sentences like 

(x)Tx. (x)Tx says “Everything is a turtle. To know if this sentence is true or false, it may 

not be enough to know what all the turtles are and what all the green things are. We also 

need to know what all the things are. The list of all the things is called the domain, 

which we can also list in a set. If our domain is just {l, m, d, r}, then (x)Tx is true. If our 

domain includes Splinter who is not a turtle then (x)Tx is false. 

 

So an interpretation includes the domain (a list of all the objects),  the predicates we’re 
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interested in, and the list of objects that satisfy those predicates.  You may also need a 
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dictionary to know what the interpretation is saying. It may seem weird giving a domain, 

but notice that many times we often (and usually!) restrict the domain in our own 

conversations. If I “Jim drank all the beers.” I’ve usually restricted the domain to things 

at the party, not everything in the universe. We take myself to mean that Jim drank all 

the beers in the party, not that he drank all the beers in the universe. This is a kind of 

domain restriction.  

1 We use braces {...} around sets and commas in between the elements. The order 

doesn’t matter. So {m, d} is the same set as {d, m}. 

2 For the purposes of this class, we will not consider empty domains. 

3 An object x satisfies a predicate F if and only if Fx is true. 

1 



Here’s an interpretation: 

D : {a, d, l, m, r, s} 

Tx: {d, l, m, r} 

Gx: {d, l, m, r} 

Cx: {a, l, m, r} 

Rx: {r, s} 

Px: {m} 

 

Here’s a dictionary: 

a ≡ April; d ≡ Donatello; m ≡ Michelangelo; r ≡ Raphael; s ≡ Splinter 

Tx ≡ x is a turtle. Gx ≡ x is green. Cx ≡ x is cool. Rx ≡ x is rude. Px ≡ x is a party 

dude. 

 

Now we can determine the truth value for any PL sentences using these predicates for 

this domain. 

 

Exercise 1:  Determine whether the following sentences are true or false. 

a. ~(x)Px 

b. (∃x)(Px ⋅ Cx) 

c. (x)(Tx ⊃ Cx) 

d. (∃x)(Tx ⋅ Gx)  

e. (∃x)(Tx ⊃ ~Gx) 

f. (x)((Cx ⋅ Rx) ⊃ Px) 

g. (∃x)((Tx ⋅ (Cx ⋅ Rx)) 

h. (∃x)(~Tx ⋅ Cx) 

i. (x)(T ⊃ (Cx v ~Rx)) 

j. (∃x)(~Tx ⋅ Cx) 

k. (x)(Px ⊃ Cx) 

 

Exercise 2: Create an interpretation where the following sentence is true (remember 

you can use a different domain that the one above, but there must be at least one object 

in the domain). 

(x)(Tx ⊃ Px) 

 

Exercise 3: Create and interpretation where the following three sentences are true. 

(x)(Tx ⊃ Cx) 

~(∃x)(Cx ⋅ ~Tx) 

(x)(Gx ⊃ (Tx v ~Cx))  
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Validity in Predicate Logic 

 

Now that we’re armed with interpretations, we can tackle validity in PL. The first thing 

to notice is that truth tables aren’t going to be of any use. In SL there were only 2 ways 

the world could be for an atomic sentence p; 4 ways the world could be for atomic 

sentences p and q, etc: 

  

p q 

T T 

T F 

F T 

F F 

 

Those possible ways the world could be were represented on our truth tables. Once we 

listed those truth assignments, we could determine the truth value for any sentence give 

any assignment. We could procedurally list every way the world could be, and then 

check each of these ways for a counter-example for any argument. If there was no 

counter-example, the argument was valid. 

 

An argument logic in PL is valid when it’s impossible for there to be any interpretation 

in which the premises are true, and the conclusion is false. A counter-example in PL, 

then, consists of an interpretation in which all the premises of an argument are true, but 

the conclusion is false. 

 

EXAMPLE 

Consider the argument: (x)(Gx ⊃ Hx); (∃x)(Gx ⋅ Fx), Fa // Fa ⋅ Ha 

And counterexample is the interpretation D :{a, b} Gx: {b} Fx: {a, b} Hx: {b} 

 

 

If there were something like a truth table for PL arguments, the interpretations would be 

the lines of the table, and we would check each interpretation for a counterexample. 

However, for any sentence (and any argument), there are infinitely many interpretations 

because there are infinitely many possible domains. 

 

This means that we’ll be using the proof method we used for SL with some added rules 

to prove validity. To prove invalidity, we’ll have to creatively come up with an 

interpretation that serves as a counter-example. We’ll practice both of these methods in 

the future. 
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